

Home Search Collections Journals About Contact us My IOPscience

Compositional effect on Cr^{3+} site distribution in MgO or ZnO codoped $LiNbO_3$: Cr congruent and stoichiometric crystals

This article has been downloaded from IOPscience. Please scroll down to see the full text article. 1998 J. Phys.: Condens. Matter 10 L341 (http://iopscience.iop.org/0953-8984/10/21/002) View the table of contents for this issue, or go to the journal homepage for more

Download details: IP Address: 171.66.16.151 The article was downloaded on 12/05/2010 at 23:23

Please note that terms and conditions apply.

LETTER TO THE EDITOR

Compositional effect on Cr³⁺ site distribution in MgO or ZnO codoped LiNbO₃:Cr congruent and stoichiometric crystals

G A Torchia[†], J A Sanz-García[†], F J López[†], D Bravo[†], J García-Solé[†], F Jaque[†], H G Gallagher[‡] and T P J Han[‡]

† Departamento de Física de Materiales , Universidad Autónoma de Madrid, Cantoblanco, E-28049 Madrid, Spain

[‡] Department of Physics and Applied Physics, University of Strathclyde, Glasgow G4 0NG, UK

Received 24 February 1998

Abstract. In this letter optical and electron paramagnetic resonance (EPR) techniques are used to investigate the effect of stoichiometry changes on the site distribution of Cr^{3+} ions in LiNbO₃:Cr crystals with (or without) MgO or ZnO codoping. In congruent (Li_{0.95}Nb_{1.01}O₃) crystals codoped with MgO (ZnO) the Cr^{3+} ions begin to enter into the Nb⁵⁺ site for concentrations higher than 4.5% (4.7%). Below this MgO (ZnO) threshold Cr^{3+} ions enter only into the Li⁺ sites. However, for nominally stoichiometric (LiNbO₃) crystals, the threshold concentration is much lower (between 0 and 0.2% in our crystals). The use of Cr^{3+} ions as an optical and paramagnetic probe to evaluate the grade of stoichiometry is considered.

The optical absorption and luminescence properties of doped crystals are largely determined by the local site symmetry of the optically active ions. In recent years, the position in the lattice and local environment of rare earth and transition metal ions in congruent $Li_{0.95}Nb_{1.01}O_3$ crystals have been widely studied because of their potential use in electrooptic and integrated devices [1]. Through the combination of different experimental techniques an acceptable knowledge of the location of these ions in the lattice has been achieved. For congruent $Li_{0.95}Nb_{1.01}O_3$ crystals doped with rare earth ions only the Li⁺ sites have been reported to be occupied, irrespective of the MgO concentration [2,3]. At variance, in chromium doped Li_{0.95}Nb_{1.01}O₃ samples two types of Cr³⁺ centre have been observed [4,5]. These correspond to Cr^{3+} at Li^+ or Nb^{5+} sites and are labelled Cr^{3+}_{Li} and Cr_{Nb}^{3+} centres, respectively. For codoped samples with MgO concentration levels below 4.5% only the Cr_{Li}^{3+} centres are observed; above the threshold value of 4.5% the Cr_{Nb}^{3+} centre appears together with the previous one. As the MgO concentration increases, the population of Cr_{Li}^{3+} centre decreases whereas that for Cr_{Nb}^{3+} increases [6]. A similar effect has been also observed for ZnO codoped congruent samples, the threshold in this case being 4.7% [7]. Above these threshold values, substantial changes in the optical properties take place. So, the colour of the crystals changes from green to pink, the absorption edge shifts and photorefractive damage vanishes [6,7].

The existence of a threshold (at 4.5% of MgO or 4.7% of ZnO) for all the above effects established [6–8] the link between the redistribution of the Cr^{3+} centres and the intrinsic defects. In particular it depends on the number of Li⁺ sites available for substitution by Cr^{3+} ions. It has been shown [6,7] that in codoped congruent crystals the available Li⁺

0953-8984/98/210341+05\$19.50 © 1998 IOP Publishing Ltd

L341

Figure 1. Dependence of the ZnO concentration measured in the crystal on the concentration added in the melt.

sites are preferentially occupied by Mg^{2+} (or Zn^{2+}) ions, resulting in a reduction in the Cr_{Li}^{3+} centres as the MgO (or Zn) concentration increases. When all the available Li⁺ sites are occupied by divalent cations, the Cr^{3+} ions substitute the Nb⁵⁺ ions resulting in the appearance of Cr_{Nb}^{3+} centres.

As for the available Li^+ sites, two models for the intrinsic defects associated to the Li deficiency of congruent crystals have been reported (see [6] and references therein). In both models the Li deficiency gives rise to antisite defects, i.e. Nb^{5+} ions located in Li^+ sites (Nb_{Li}^{5+}) . However, the mechanisms for total charge compensation are different. The Li-site vacancy model proposes a number of Li^+ vacancies together with antisites at the Li^+ sites and all Nb^{5+} sites occupied by Nb^{5+} , whereas, the Nb-site vacancy model proposes only antisites at the Li^+ sites and a number of Nb^{5+} vacancies at the Nb^{5+} sites. In both models the available Li^+ sites (Li^+ vacancies and/or antisites) amount to a concentration of 4.6%.

This letter extends the previous study for congruent crystals to nominally stoichiometric ones codoped with MgO or ZnO. In this case a much lower threshold value (0.2% or less) has been found for our crystals. This is explained by the dependence of the intrinsic defect concentration on the stoichiometric grade of the crystals.

Congruent ($Li_{0.95}Nb_{1.01}O_3$) and nominally stoichiometric ($LiNbO_3$) crystals will be named hereafter as C and S crystals, respectively. They were grown in air by the Czochralski method. The S crystals were grown from congruent composition melts with the addition of 7% weight of K₂O [9]. With this composition the error in the stoichiometric grade is evaluated to be around 0.15 mol%. Codoped crystals were grown by adding up to 10% of MgO or ZnO.

The Cr/Nb and Zn/Nb ratios were determined using the total reflection x-ray fluorescence technique (TRXFT). The Mg concentration was determined by the energy dispersive x-ray (EDX) technique.

Optical absorption spectra were obtained with a Hitachi 345 spectrophotometer. Details about the EPR measurements are described in [5].

Figure 1 shows the ZnO concentration in the crystal versus the concentration in the melt

Figure 2. Absorption spectra measured at room temperature of: (a) congruent composition LiNbO₃:Mg:Cr crystal (Mg and Cr concentrations in the crystal are 4% and 0.07%, respectively), (b) congruent composition LiNbO₃:Mg:Cr crystal (Mg and Cr concentrations in the crystal are 6% and 0.07%, respectively), (c) nominally stoichiometric LiNbO₃:Mg:Cr crystal (Mg and Cr concentration in the crystal is 0.032%) and (d) nominally stoichiometric LiNbO₃:Mg:Cr crystal (Mg and Cr concentrations in the crystal are 0.2% and 0.013%, respectively).

for C crystals as determined by TRXFT. Two stages appear in the figure which indicate the presence of different mechanisms in the Zn incorporation. It is observed that in the concentration range from 0% to about 4.5% the effective distribution coefficient, K_{eff} , is close to 1 whereas above this concentration level K_{eff} decreases, reaching an average value of 0.3. Similar K_{eff} values were also observed for MgO codoped crystals. This result is in good agreement with the two proposed cation-vacancy models for the non-stoichiometry of LiNbO₃, where the total concentration of Li⁺ sites available for substitution is 4.6% in C crystals.

Figure 2 shows the room temperature absorption spectra for various crystals: (a) congruent codoped $Li_{0.95}Nb_{1.01}O_3:Mg(4\%):Cr(0.07\%)$; (b) congruent codoped $Li_{0.95}Nb_{1.01}O_3:Mg(6\%):Cr(0.07\%)$; (c) stoichiometric LiNbO₃:Cr(0.032\%) and (d) stoichiometric codoped LiNbO₃:Mg(0.2%):Cr(0.013\%). All the spectra consist of two broad bands that have been attributed to the vibronic transitions ${}^{4}A_2 \rightarrow {}^{4}T_1$ and ${}^{4}A_2 \rightarrow {}^{4}T_2$ associated with Cr^{3+} ions [1, 6]. Figures 2(a) and 2(c), which correspond to C composition with Mg content below the threshold and to S compositions, respectively, show identical spectral features indicating that the same type of Cr^{3+} centre is present in both compositions. The lower absorption intensity in spectrum 2(c) is a consequence of the lower Cr concentration in the S crystal [8]. Figures 2(b) and 2(d), corresponding to C and S compositions with MgO concentrations above a certain threshold, show an overall decrease in the absorption intensity and a shift of the ${}^{4}A_2 \rightarrow {}^{4}T_1$ transition to lower energy when compared with the

Figure 3. EPR spectra measured at room temperature with the magnetic field perpendicular to the crystal c axis. Parts (a), (b), (c) and (d) of the figure correspond to the same samples as in figure 2.

spectra shown in figures 2(a) and 2(c). In addition, the ${}^{4}A_{2} \rightarrow {}^{4}T_{2}$ vibronic band is slightly broadened on the low energy side. These changes have been previously attributed to the appearance of Cr_{Nb}^{3+} centres [6, 8]. The low overall absorption intensity can be explained by the smaller oscillator strength associated with the Cr_{Nb}^{3+} centre in relation to the Cr_{Li}^{3+} centre [8]. The data of figure 2 clearly demonstrate the redistribution of the population of both Cr^{3+} centres in relation to the concentration of the Mg (or Zn) codopant, which in turn is related to the concentration of the available Li⁺ sites in the crystals.

Figure 3 shows the room temperature EPR spectra corresponding to the four samples shown in figure 2. For the C sample codoped with MgO below the threshold (figure 3(a)), the EPR spectrum consists only of the EPR signal attributed to Cr_{Li}^{3+} centres [5]. Otherwise, for C samples codoped with MgO above the 4.5% threshold (figure 3(b)) the EPR spectrum associated with Cr^{3+} ions located in Nb⁵⁺ sites is clearly observed together with that due to the Cr_{Li}^{3+} centres [6]. In the S samples without MgO codoping (figure 3(c)) only the EPR signal attributed to the Cr_{Li}^{3+} centre is detected. At variance, in the MgO codoped (0.2%) S sample (figure 3(d)), the EPR spectrum consists almost exclusively of the signal associated with Cr_{Nb}^{3+} centres, even though a weak signal from the Cr_{Li}^{3+} centres still remains.

It is to be noted that the EPR lines for the S samples are clearly narrower than for the C ones suggesting a much more regular and homogeneous crystal structure. This behaviour can be attributed to the reduction of intrinsic defects, which could cause strain and local distortions in the environment of the Cr centres.

Similar results to that shown in figure 3 were obtained for C and S LiNbO₃:Cr crystals codoped with ZnO.

The presented observations confirm that for C composition, where Li⁺ sites are available for substitution, Cr^{3+} ions enter these sites preferentially giving rise to the Cr_{Li}^{3+} centres. When divalent codopant cations, such as Mg^{2+} or Zn^{2+} , are present they occupy the available Li⁺ sites with preference over Cr^{3+} ions, resulting in a reduction in the amount of Cr_{Li}^{3+} centres. Above the threshold concentration, where all these Li⁺ sites are filled in, the Cr^{3+} ions have to compete with the divalent cations for the Li⁺ or the Nb⁵⁺ sites. Now their preference is to substitute the Nb⁵⁺ ions resulting in the appearance of Cr^{3+}_{Nb} centres. Accordingly, in a totally stoichiometric crystal one would expect to detect only Cr^{3+}_{Nb} centres as no available Li⁺ sites would be present. The observation of Cr^{3+}_{Li} centres in our S samples (without codopant) suggests that they have not achieved the desired total stoichiometric composition. However, the small amount of codopant required to enhance the population of the Cr^{3+}_{Nb} centre shows that they must be very close to stoichiometry.

The results obtained in this work agree better with the Li-site vacancy model than with the Nb-site vacancy one. This is because, in the second model, one would expect the Cr_{Nb}^{3+} centre to appear below the threshold value as there are Nb⁵⁺ sites (the Nb⁵⁺ vacancies) available for Cr^{3+} ions.

In conclusion, the present data show that the changes in the optical properties of the LiNbO₃:Cr crystals must be attributed to the relative population of the Cr_{Li}^{3+} and Cr_{Nb}^{3+} centres, which is directly related to the number of available Li⁺ sites depending on the grade of stoichiometry and codoping. The closer to the S composition the more homogeneous the crystal structure and the better the crystal quality. This is especially desirable in many optoelectronic devices. The use of the Cr^{3+} centres as a probe could provide a simple and effective method to evaluate the stoichiometric grade of this material. This could be done even for the more stoichiometric LiNbO₃ crystals since the sensitivity of the EPR technique in detecting the Cr_{Nb}^{3+} centres has a detectable limit of about 0.001%, equivalent to 10 ppm defects.

Partial financial support by the Dirección General para Investigación Científica y Tecnológica (DGICYT) under project No PB94-0147-C02 is gratefully acknowledged. One of us, GAT, wishes to acknowledge the Fundación YPF Argentina, for his grant.

References

- Sohler W 1993 Proc. 11th Ann. Conf. on European Fibre Optics Communications and Networks (EFOC & N'93) (The Hague, July 1993)
- [2] Macfarlane P I, Holliday K, Nicholls J F H and Henderson B 1995 J. Phys.: Condens. Matter 7 9643–56
- [3] Rebouta L, Da Silva M F, Soares J C, Santos M T, Diéguez E and Agulló-López F 1995 Radiat. Eff. Defects Solids 136 137–9
- [4] Corradi G, Söhte H, Spaeth J-M and Polgár K 1991 J.Phys.: Condens. Matter 3 1901-8
- [5] Martín A, López F J and Agulló-López F 1992 J. Phys.: Condens. Matter 4 847-53
- [6] Díaz-Caro J, García-Solé J, Bravo D, Sanz-García J A, López F J and Jaque F 1996 Phys. Rev. B 54 13 042-6
- [7] Torchia G A, Sanz-García J A, Díaz-Caro J, Jaque F and Han T P J Chem. Phys. Lett. at press
- [8] Díaz-Caro J, García-Solé J, Martínez J L, Henderson B, Jaque F and Han T P J Opt. Mater. at press
- [9] Malovichko G I, Grachev V G, Kokonyan E P, Schirmer O F, Betzler K, Gather B, Jermann F, Klauer S, Schlarb U and Wöhlecke M 1993 Appl. Phys. A 56 103–8